2015年,葡萄牙里斯本大学的研究者决定另辟蹊径,此前的研究者使用的摆钟为商业和通用钟表的缩小版本,使用的支撑摆钟的材料也跟惠更斯使用的非常不一样,他们决定还原出当时惠更斯的观测条件。
研究人员委托墨西哥一个大型的纪念性钟表厂,仿照惠更斯当时使用的摆钟,制作出了两个复杂的摆钟,然后将它们悬挂到铝梁上,并用高精度光学传感器测量钟摆摆动的周期。果然,在一段时间后,摆锤开始以相同的幅度反方向摆动。
随后,研究者把两个时钟又放在一张木桌上。正如他们所期望的,钟摆的运动随时间同步。然而,一个很奇怪的现象出现了,与惠更斯观察到的不同的是,时钟没有朝相反方向摆动。相反,它们摆动的方向完全相同。虽然两个时钟的钟摆保持同步,但随着时间的推移,它们变得越来越慢,而且两个钟表上显示的时间也很不准确。那么,这是为什么呢?
通过模拟时钟的数字模型,研究者们找到了答案。
原来,惠更斯300多年前的预测是正确的,两个时钟确实存在“沟通”现象,而“沟通工具”竟然是连接时钟的支撑物,比如木桌,两个时钟通过木桌在交换能量。而支撑材料的刚度、厚度和质量都会影响时钟同步的方式,以及时钟的时间准确程度。
那么,这些悬挂材料之间传递的是什么能量呢?
研究者使用了不同的悬挂材料,试验了许多次,最终发现只有当材料有非常好的声音传导能力时,两个时钟的时间才会越来越接近,钟摆摆动的频率也越来越接近,共振才会出现。这个研究也为惠更斯摆钟之谜找到了一个可能的解释:走动着的钟的声音能量在连接着它们之间的材料间穿梭,导致它们最终出现了摆幅相同的共振现象。
惠更斯设计的钟摆形式虽然多样,但都遵循一个基本的结构。钟摆、齿轮等装置靠相互产生推力运动,每个结构的机械运动都会产生少量的声能,当一个钟滴答摇摆了一声,这些声音能量会在两者的传导物之间传播,并进行能量交换,两个钟摆的摆幅会因此微调,直到它们共振,出现一个时钟的摆与另一个同步的现象。原来,真正的幕后推手是“声能”。
那么,为什么这个实验需要长达18个小时甚至需要数天,才能出现同步现象呢?时钟同步为什么这么缓慢?
研究者也给出了一个很好的解释,惠更斯的时钟重达23千克或27千克,而且连接这两个摆钟的是一个僵硬的木梁,而研究者实验中的摆钟只有0.4千克或更轻,时钟悬挂的材料也没有那么坚固,更灵活的材料往往会吸收来自时钟的大部分能量并防止其被传输,所以,惠更斯的时钟传输的声能更大。
在生活中,同步现象还有很多,例如,在人体内,有几种生物节律 :呼吸、心跳和动脉跳动。科学家已经发现,当这些节奏中的一些节奏彼此同步时,能量消耗是最小的,因此,在这种情况下,同步是对身体有益的。
但另一方面,同步也可能是危险的或有害的,比如癫痫发作的过程与神经元的异常同步密切相关。在建筑上,曾经有工程师忽略共振现象,而导致桥梁崩塌,比如美国华盛顿州的塔科马海峽吊桥因为其桥面厚度不足,在受到强风的吹袭时引起卡门涡街,使桥身摆动。当卡门涡街的振动频率和吊桥自身的固有频率相同时,引起吊桥剧烈共振而崩塌。假如弄清楚了惠更斯钟摆的问题,可能有助于解释大自然中广泛存在的同步现象,并解决一些实际问题。
然而,虽然钟摆之间的支撑材料可以传播声能,让两个时钟出现同步现象,但研究者并不满足于这一个答案。研究者做了另外一个实验,将两个时钟的齿轮驱动机制,换成一个更平滑的机制,这时时钟没有产生那么大能量的脉冲,然而摆钟仍然出现了同步现象,这就说明除了声能,这两个时钟肯定还在受着其他因素的影响。对于研究者而言,这次的实验只是揭开了惠更斯钟摆之谜的一层面纱,在这个看似简单的问题后面,一定还隐藏着其他没有被找到的答案。
文章地址:http://www.erwinsattler.net/artlist/18/91.html返回搜狐,查看更多
